Créer un site internet

Chimie !?Dystrophisation !?

 

Dystrophisation

Un article de Wikipédia, l'encyclopédie libre.

La dystrophisation est l'état extrême de l'eutrophisation, qui se traduit par la mort des organismes animaux et végétaux supérieurs.

 Processus [modifier]

Dans les mares et étangs :

  • Les bactéries aérobies et les algues pullulent suite à un apport excessif de matières organiques biodégradables, lui-même engendré par un excès de nutriment. Les algues s'accumulent naturellement en surface où l'ensoleillement est le plus important.
  • Les bactéries (et le zooplancton constitué des organismes animaux qui dans un premiers temps les mangent) appauvrissent rapidement le milieu en oxygène dissout (vases, eau), notamment la nuit quand la photosynthèse est inactive et que les plantes et les autres organismes consomment l'oxygène dissout et expirent du CO2.
  • La hausse du taux de CO2 et de nutriments provoque un développement encore plus important de phytoplancton et/ou d’algues de surface, qui vont faire obstacle à la pénétration du soleil et des UV dans l’eau.
  • Les organismes aérobies meurent dans les couches les plus profondes, en libérant du CO2, du méthane, de l’azote et du phosphore qui vont encore enrichir le milieu et accélérer le processus qui va alors s'autoentretenir (Une partie de l'azote s'évapore, mais le phosphore reste mobilisable dans l'eau et entretient la dystrophisation).
  • Le zooplancton, les organismes mobiles (poissons, amphibiens, invertébrés) ayant disparu, alors que la capacité du vent à oxygéner et brasser les couches d'eau diminue aussi, et une couche chaude s’étant formé en surface, les eaux profondes ne se ré-oxygènent plus (effet thermocline + brassage réduit des eaux).
  • Après un certain temps, seules les bactéries anaérobies survivent dans une vase noire et putride. La fermentation qu’elles y entretiennent dégage des gaz tels que l’hydrogène sulfuré, l’ammoniac et le méthane, défavorables aux formes de vie supérieures.

Les apports de nutriments agricoles ou issus de l’érosion accrue des sols sont souvent clairement en cause; mais localement, l’immersion ancienne de déchets, militaires notamment (munitions immergées, explosifs à base de nitrates) pourraient également être en cause ou aggraver le phénomène, en mer Baltique notamment, mais aussi sur la façade ouest de l'Europe (voir carte centrale du rapport OSPAR[1]).

Solutions [modifier]

Pour limiter ou combattre la dystrophisation, il faut :

  1. stopper la source de nutriments eutrophisants;
  2. exporter les végétaux qui pullulent en surface, en veillant à ce que, par lessivage, les nutriments qu'ils contiennent ne reviennent pas dans l'eau.

L'oxygénation mécanique ou par bulleur du milieu peut accélérer le processus d'épuration, contribuant aussi au mélange des couches. l'exportation des vases peut aussi faire partie du processus, mais il est plus coûteux.

Dans les estuaires [modifier]

  • Le phénomène peut exister au cœur de certains estuaires, dans le bouchon vaseux qui est souvent touché par l'eutrophisation, laquelle dans une certaine mesure et à certaines époques est naturelle. C'est par exemple le cas suite aux apports fluviaux à l'automne ou après de violentes pluies avec inondations. Mais l'imperméabilisation et l'agriculture ont exacerbé ces phénomènes.

En mer [modifier]

  • Le phénomène semble devenir de plus en plus fréquent, prenant des formes différentes dans les mers fermées et dans les Golfes ou baies où l'eau est peu renouvelée, où se produisent alors des blooms planctoniques accompagnés de conditions d'anoxie. Le risque est le plus élevé dans les zones où les apports de nutriments agricoles à partir des estuaires ou des pluies (azote dissous) sont excessifs.


Dans les cas extrêmes se forment des zones mortes pouvant atteindre des dizaines de kilomètres carrés, voire bien plus. L’ONU a identifié dans le monde une centaine de ces « Dead Zones » où de vastes surfaces sont parfois concernées (environ 22 000 km2 pour la plus vaste en 2007). La plus vaste est celle du Golfe du Mexique avec un record d'environ 22 000 km2.

Agrocarburants et dystrophisation [modifier]

Un rapport[2] du Conseil national de la recherche des États-Unis (United States National Research Council) intitulé « Water Implications of Biofuels Production» estime que la promotion des biocarburants se traduira par une utilisation accrue d'engrais et de pesticides, ce qui aurait une incidence sur la qualité de l'eau des nappes phréatiques, les rivières et les eaux côtières et marines en aval des estuaires. Selon ce rapport, le maïs, de plus en plus cultivé dans le bassin du Mississippi est la plante la plus utilisée aux États-Unis pour produire des agrocarburants. Il est souvent irrigué et toujours très consommateur d’eau. C’est aussi la culture (hormis le maïs-bio, non utilisé pour les agrocarburants) qui reçoit le plus d’engrais et de pesticides à l’hectare (plus que le soja et la plupart des autres herbacées).

La demande en agrocarburant va pousser les agriculteurs à en planter plus encore, ce qui se traduira par une augmentation de la pollution de l’eau et de l’eutrophisation générale des écosystèmes, qui risque d’accélérer la baisse de la biodiversité dans ces zones, ce qui contredit les engagements de la convention de Rio sur la biodiversité et de réduction de la perte de biodiversité à l’échéance 2010 en Europe.
Le rapport propose quelques moyens d’atténuer ces problèmes (par exemple grâce à des cultures pérennes, ou systèmes de polyculture-prairies qui retiennent le sol et pompent ses éléments nutritifs bien mieux que la plupart des cultures en rangs comme le maïs.

Un autre rapport récent[3] du Conseil de la recherche, a porté sur la « qualité de l'eau du fleuve Mississippi au regard de la Loi sur l'eau : progrès, défis et opportunités ». Il recommande que l'Agence de protection de l'environnement des États-Unis (EPA) et le département de l'Agriculture des États-Unis (USDA) coopérèrent mieux pour réduire les impacts de l'agriculture sur la qualité de l'eau du Mississippi et du nord du golfe du Mexique.


La pullulation de certaines espèces primitives de bactéries ou de plancton produisant des toxines peut aussi exacerber des phénomènes de mortalité qui aggravent encore les effets de l'anoxie.

Zone morte

Un article de Wikipédia, l'encyclopédie libre.

Privés d'oxygène, des organismes meurent, et leur décomposition amplifie le déficit en O2. Ici un fond marin en mer Baltique occidentale.

Une zone morte est une zone hypoxique (déficitaires en oxygène dissous) située dans un environnement aquatique (mers, océans, estuaires, grands lacs, mares, etc.). Les études conduites en mer Baltique et aux États-Unis depuis la fin des années 1990 montrent que nombre de poissons, dont on pourrait penser qu'ils puissent facilement les fuir, y perdent rapidement connaissance et meurent asphyxiés. Comme on l'a observé au moyen de films pris par des robots [1] [2], si dans certains cas, certains poissons semblent pouvoir échapper à la mort, les crustacés tels que homards, langoustes ou crevettes se déplacent trop lentement pour échapper à l’asphyxie. Quant aux moules, huîtres et autres organismes fixés, ils sont condamnés. Les coraux et de très nombreux animaux coloniaux meurent, et leur putréfaction contribue à accentuer le phénomène.

Au XXIe siècle, des zones mortes sont observées de plus en plus souvent, et sur des surfaces de plus en plus grandes. La plus vaste zone morte repérée en 2003 (parmi 150 environ, et 450 en 2008) atteignait environ 70 000 km² selon l'ONU. Ces zones ont des impacts de plus en plus importants sur la pêche et les écosystèmes.

Sommaire

[masquer]

 Définitions [modifier]

Dans un fjord allemand (Kiel), exemple de phénomène d'hypoxie, puis d'anoxie, la nuit
Dans un fjord allemand, influence de la salinité sur certains phénomènes d'hypoxie, puis d'anoxie
Ce type d'estuaire, presque fermé et abrité du vent et des vagues, est naturellement propice aux phénomènes d'hypoxie et de zone morte (Baie de San Antonio), Texas, États-Unis. (Noter la turbidité de l'eau)

Il existe des zones naturellement anoxiques dans les grands fonds marins, ou au fond de grands lacs là où l'eau est stratifiée et immobile. En mer Noire profonde, une zone morte existe et persiste ainsi sans doute depuis des millénaires.

Dans le passé lointain de la planète, lors des grandes catastrophes bio-géologiques marquées par des extinctions majeures, des zones anoxiques semblent avoir été en jeu, mais à des échelles bien plus vastes et durables (durant plusieurs millions d'années parfois), occasionnant des pertes très importantes (jusqu'à plus de 80 % des espèces vivantes de la planète).

La notion de « zone morte » désigne au XXIe siècle des zones anormalement anoxiques, suffisamment appauvries en oxygène pour tuer par asphyxie tout ou partie de la faune marine (en particulier les animaux fixés et les crustacés et animaux peu mobiles). Dans tous les cas identifiés à ce jour, le phénomène a ou semble avoir pour origine directe ou indirecte des activités humaines.

Ces phénomènes peuvent durer toute l'année, quelques heures ou quelques jours. Le plus souvent, ils durent quelques mois dans l'année, avec un pic au milieu de l'été (juillet dans l'hémisphère nord).

L’oxygène dissous est exprimé en pourcentage du seuil de saturation, lequel varie selon la température, la pression et la salinité de l’eau, et indirectement selon l'agitation et la stratification des couches d'eau.

  • La plupart des espèces dites « supérieures » ont besoin d’une eau riche en oxygène, à au moins 80 % du seuil de saturation.
  • On dit qu'il y a hypoxie lorsque l’oxygène dissous n’est présent que pour 1 % à 30 % de son seuil de saturation dans l’eau ; les formes de vie naturellement présentes dans un milieu oxygéné sont alors perturbées ou tuées. Sous la barre des 30 % du seuil de saturation, la plupart des poissons fuient la zone quand ils le peuvent ou meurent, la décomposition de leur cadavre contribuant à encore consommer l'oxygène dissous restant.

 

  • Le stade d’anoxie est atteint quand l’oxygène dissous est totalement absent. La plupart des formes de vie consommant de l'oxygène disparaissent alors au profit de bactéries primitives et d’organismes fongiques. Certains organismes munis de poumons ou pouvant respirer en surface par la peau ou en « pipant » l'air (comme certains poissons) survivent à une brève période d’anoxie (quelques minutes à quelques heures), mais ils peuvent néanmoins mourir des suites du manque de nourriture ou des toxines produites par la décomposition des organismes dans les zones devenues anoxiques ou très appauvries en oxygène. En effet, la décomposition de la nécromasse en l'absence d'oxygène est une source de toxines pour le milieu comme la toxine botulique, mortelle pour l’Homme au millionième de gramme.
  • Ampleur du phénomène [modifier]

    Un rapport de 2004, repris dans le rapport GEO 2003, présenté aux ministres à l'ONU en 2004, identifie près de 150 zones mortes dans le monde. Un autre rapport, de 2008, dénombrait quant à lui 450 zones mortes.[3]

    Klaus Toepfer, directeur exécutif du Programme des Nations unies pour l'environnement (PNUE), notait à cette occasion que si certaines de ces zones sont de superficie réduite (moins d’un km²), d’autres sont devenues très vastes, la plus grande atteignant 70 000 km².

    Le nombre et la taille de ces zones augmentent chaque décennie au moins depuis les années 1970 et plus particulièrement depuis la fin des années 1990[4]. Les scientifiques en comptaient en 2003 près de 150 majeures sur la planète, chacune traduisant très probablement des phénomènes graves de dystrophisation marine. Dans certains cas, comme en mer Baltique, en quelques dizaines d'années, toutes les formes de vie supérieure ont disparu, au profit de bactéries très primitives proches de celles qui vivaient il y a plusieurs milliards d'années, avant l'apparition de la vie sur les terres émergées. Une interdiction de la pêche dans tout ou partie de la mer Baltique a été évoquée, mais ne semble pas actuellement politiquement envisageable. La Commission HELCOM tente avec d'autres institutions de limiter ce phénomène à la source en limitant les apports d'engrais et de nutriments sur terre et en étudiant le problème des munitions immergées.

    L'observation satellitale du plancton (par exemple par SeaWiFS ; Sea-viewing Wide Field-ofview Sensor actif depuis 1997) montre une forte progression depuis 1998 de 6,6 millions de km² (15 %) (12 X la taille de la France) ; l’Atlantique Nord étant la zone où les déserts océaniques ont progressé le plus vite (+ 8,3 % par an). Le phénomène semble s'accompagner d'une descente vers le sud des populations de marsouins et dauphins.

    Causes du phénomène [modifier]

    Dans un premier rapport[5] pour l'ONU, les experts ont identifié comme première cause les apports de fertilisants agricoles et les apports de nutriments et de matière organique induits par la dégradation et l'érosion croissante des sols agricoles ou déboisés, dans un contexte d'agriculture de plus en plus intensive. Le rapport OSPAR 2002 sur l'état de santé des écosystèmes pointe plus particulièrement l'azote comme responsable.

    Ces apports contribuent à augmenter la DCO (demande chimique en oxygène) et la DBO (demande biologique en oxygène) bien au-delà de ce que le milieu peut fournir la nuit à partir des réserves d'oxygène dissous dans l'eau, et parfois de jour tant l'eau est chargée de matières consommant de l'oxygène.

    Mais tout apport important de matières organiques (inondation/crues, boue de curage, mobilisation de sédiments par exemple par la construction d'un port, par une carrière sous-marine, ou plus simplement par le chalutage) dans un milieu aquatique est susceptibles d'entraîner une raréfaction de l'oxygène dans le milieu, d’autant plus que la mobilité horizontale et surtout verticale (thermocline) de l’eau est basse, c’est-à-dire là où les masses d'eau sont stratifiées (dans les fjords par exemple) et lorsqu’elles le sont.

    En mer, des phénomènes locaux et saisonniers d’appauvrissement en oxygène existent naturellement localement à des périodes de l’année ou l’eau se stratifie (été, automne, lors de la formation d’une thermocline), mais les apports anthropiques les aggravent considérablement. Des données danoises citées par OSPAR montrent que dans les eaux stratifiées du Kattegat, où un déficit grave en oxygène est fréquemment mesuré, c'est la charge en azote qui a le plus d’impact sur ce phénomène. L'Agence danoise de protection de l'environnement a calculé qu’une diminution de 50 % de la charge réelle d'azote aboutirait à une diminution de près de 50 % de la durée des phénomènes d'anoxie dans ces zones.

    Pour la zone OSPAR, des anoxies graves sont constatées dans de nombreux estuaires, baies et fjords, dans la mer des Wadden, le Kattegat et l'est du Skagerrak.

    L’export en mer de sédiments de curage portuaire, fluvial ou d'estuaire a également un impact : On a ainsi constaté, aux époques de stratification, dans l'estuaire extérieur de la Clydeet dans la baie de Liverpool des anoxies temporaires, toutes deux imputables à l'immersion de boues issues de curage[6],[7].

    Divers facteurs aggravent ces effets 
    • pollutions diverses, principalement industrielles, urbaines et automobiles.
    • Le manque de réseaux de collecte et d'épuration des eaux usées dans les régions densément peuplées participe sans doute aussi au phénomène, mais ne peut expliquer à lui seul la répartition de ces zones.
    • Dans certaines régions du monde, les taux d’azote dissous dans les pluies augmentent également fortement (notamment depuis l’usage de l’épandage d’engrais azotés liquides sur les champs). De même, les pluies acides solubilisent plus de nutriments, qui sont emportés à la mer ou dans les lacs. Les grandes inondations sont également plus fréquentes, souvent pour des causes humaines (pratiques agricoles, remembrements, perte de matière organique des sols et imperméabilisation croissante des surfaces habitées). La combinaison de ces trois phénomènes accélèrent les apports de matières eutrophisantes en mer.
    • La turbidité augmente alors, au point d'empêcher les rayons solaires de pénétrer l'eau. La photosynthèse planctonique est inhibée et ni les rayons ultra-violets solaires, ni l'oxygène ne jouent plus leur rôle de « désinfectant » naturel.
    • Diverses pollutions, par les pesticides, par les métaux lourds, par les hydrocarbures et localement par des polluants chimiques issus de l'immersion de déchets, peuvent exacerber le phénomène en inhibant également la photosynthèse et/ou en tuant un grand nombre de plantes ou d'autres organismes.
    • Localement, un lien possible avec l'impact de fermes marines aquacoles a été évoqué.
    • L'utilisation de boules d'amorces riches en matière organique par les pêcheurs en eau douce fermée ou à courant lent est également une cause majeure d'eutrophisation et d'anoxie des eaux non superficielles ;
    • Enfin, une cause possible ou additionnelle, non citée par le rapport de l'ONU, mais décrite par la Commission OSPAR pourrait être explorée, en Baltique notamment ; il s'agit de possibles impacts différés de l'immersion massive dans le passé de munitions conventionnelles et chimiques.
      En effet des millions de munitions non utilisées ou non explosées (dont chimiques) ont été jetées en mer depuis la fin de la Première Guerre mondiale (1914-1918). Un rapport adressé en 2005 par les États-membres à la Commission OSPAR a listé pour la première fois 148 sites officiellement reconnus par les États-membres de la Convention OSPAR comme zones de décharge sous-marine de munitions. Trente de ces zones ont exclusivement reçu des armes chimiques, et trois sont déclarées avec un contenu « inconnu ». Il se trouve que les zones connues d'eutrophisations et certaines zones mortes majeures (en Manche/mer du Nord et Baltique notamment) coïncident avec des zones importantes d'immersion ou avec les zones qui seraient touchées par leur panache de diffusion s'il y avait fuite de toxiques. Si certaines munitions ont commencé à fortement se dégrader et/ou à fuir, le cuivre et les métaux lourds qui les composent, ainsi que les toxiques de combat que certains contiennent, pourraient localement être impliqués dans la mort du plancton et d’autres organismes. Des études (HELCOM) ont montré une augmentation nette de certains polluants (arsenic par exemple) à proximité de certains dépôts (en mer Baltique par exemple), alors que dans d'autres cas (Zeebrugge) pas ou peu de traces ont été décelées dans une zone à fort courant. L'impact des produits toxiques qu'ils contiennent est très difficile à modéliser. Du phosphore peut être présent dans certaines munitions, et des nitrates composent une grande partie de l'explosif des douilles de nombreux types de munitions immergées depuis un siècle. Les photographies prises sur certains sites montrent des douilles rongées et aujourd'hui vides, qui laissent supposer que leur contenu a bien été solubilisé dans la mer. (Voir Munition immergée pour plus de détails)
      En 1995, des experts réunis par l'OTAN avaient prévenu que les obus commenceraient probablement à fuir vers 2005. Mais si d'importants efforts sont fait en Russie et au Canada notamment pour dépolluer des décharges militaires, aucune mesure de récupération ne semble avoir a été tentée en mer. Deux raisons en sont le coût et les risques induits par de telles opérations, et le manque d'unités industrielles capables de détruire et de décontaminer ces matériels en grande quantité.

    Suite ! 

     

     

    Créer un site internet avec e-monsite - Signaler un contenu illicite sur ce site